(A) a1 = 0 and a2 = 0;
(B) a0 = 0 and a1 = 0;
(C) a1 = 0;
(D) a0 , a1 , a2 can take any real value;
Kindly explain your answer....
The map f (x) = A0 cos |x| + A1 sin |x| + A2 |x|^3 is differentiable at x = 0 iff ...?
(C) A1 = 0
A1sin l x l = A1 sin x for x %26gt; 0 and = - A1 sin x for x %26lt; 0
Hence, at x = 0,
left-hand derivative = - A1 cos x and its value = -A1
right-hand derivative = A1 cos x and its value = A1
For derivative to exist, both should be equal which is possible if A1 = 0.
A0 cos l x l and A2 l x^3 l are derivable at x = 0 for any values of A0 and A2.
Reply:C
f (x) = A0 cos |x| + A1 sin |x| + A2 |x|^3
|x| =x (x%26gt;=0)
|x| =-x (x%26lt;0)
if y=x^3
y'=3x^2
at x=0
y'=0
if y=(-x)^3=-x^3
y'=-3x^2
at x=0
y'=0
so yes we are good
|x|^3 is differentiable at 0, hence so is A2 |x|^3
if y=cos x
y'=-sinx
(at x=0)
y'=-sin0
=0
if y=cos (-x)
y'=-sin(-x)
(at x=0)
y'=-sin0
=0
if y=sin x
y'=cosx
(at x=0)
y'=cos0
=1
if y=sin (-x)
y'=-cos(-x)
(at x=0)
y'=-cos0
=-1
so sin|x| is NOT differentiable at 0!!!
C is the correct answer
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment